Learning PyTorch with Examples

  • 我们将以使用三阶多项式拟合y=sin(x)的问题作为示例。网络将包含四个参数,并通过梯度下降法进行训练,以最小化网络输出与真实输出之间的欧几里得距离来拟合随机数据

Tensors

Warm-up: numpy

  • 在介绍 PyTorch 之前,我们将首先使用 NumPy 来实现这个网络

  • NumPy 提供了一个 n 维数组对象(ndarray),以及许多用于操作这些数组的函数

  • NumPy 是一个通用的科学计算框架,它并不了解计算图、深度学习或梯度

  • 然而,我们可以通过手动实现网络的前向传播和反向传播,使用 NumPy 操作来拟合一个三阶多项式到正弦函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
import numpy as np
import math

# Create random input and output data
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)

# Randomly initialize weights
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()

learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
# y = a + b x + c x^2 + d x^3
y_pred = a + b * x + c * x ** 2 + d * x ** 3

# Compute and print loss
loss = np.square(y_pred - y).sum()
if t % 100 == 99:
print(t, loss)

# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()

# Update weights
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d

print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')

PyTorch: Tensors

  • NumPy 是一个强大的框架,但它无法利用 GPU 来加速其数值计算

  • 对于现代深度神经网络,GPU 通常可以提供 50 倍或更高的加速,因此遗憾的是,NumPy 不足以满足现代深度学习的需求

  • Tensor 是 PyTorch 中最基本的概念。PyTorch 的 Tensor 在概念上与 NumPy 数组相同:Tensor 是一个 n 维数组,PyTorch 提供了许多用于操作这些 Tensor 的函数

  • 在底层,Tensor 可以跟踪计算图和梯度,但它们也可以作为科学计算的通用工具

  • 与 NumPy 不同的是,PyTorch Tensor 可以利用 GPU 来加速数值计算。要将 PyTorch Tensor 运行在 GPU 上,只需指定正确的设备即可。

  • 使用 PyTorch Tensor 来拟合一个三阶多项式到正弦函数。与前面的 NumPy 示例类似,我们手动实现网络的前向传播和反向传播

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# -*- coding: utf-8 -*-

import torch
import math


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Randomly initialize weights
# randn()按照正态分布概率随机生成一个数
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3

# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)

# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()

# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d


print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

Autograd

PyTorch: Tensors and autograd

  • 对于两层网络来说,手动实现反向传播并不复杂,但对于大型复杂网络来说,这会很快变得非常繁琐

  • 可以使用自动微分(automatic differentiation)来自动化神经网络中反向传播的计算

  • PyTorch 中的 autograd 包提供了这一功能。当使用 autograd 时,网络的前向传播会定义一个计算图:

    1. 图中的节点是张量(Tensors)
    2. 图中的边是从输入张量生成输出张量的函数
  • 通过这个图进行反向传播,可以轻松计算梯度。

  • 每个tensor代表计算图中的一个节点。如果 x 是一个张量,并且 x.requires_grad=True,那么 x.grad 是另一个张量,它保存了 x 相对于某个标量值的梯度

  • 使用 PyTorch 的 Tensor 和 autograd 来实现用三阶多项式拟合正弦波的例子;现在不再需要手动实现网络的反向传播

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
import torch
import math

# We want to be able to train our model on an `accelerator <https://pytorch.org/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.

dtype = torch.float
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
torch.set_default_device(device)

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.randn((), dtype=dtype, requires_grad=True)
b = torch.randn((), dtype=dtype, requires_grad=True)
c = torch.randn((), dtype=dtype, requires_grad=True)
d = torch.randn((), dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y using operations on Tensors.
y_pred = a + b * x + c * x ** 2 + d * x ** 3

# Compute and print loss using operations on Tensors.
# Now loss is a Tensor of shape (1,)
# loss.item() gets the scalar value held in the loss.
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
# .item() 的作用是将单元素张量转换为 Python 标量值
print(t, loss.item())

# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
# the gradient of the loss with respect to a, b, c, d respectively.
loss.backward()

# Manually update weights using gradient descent. Wrap in torch.no_grad()
# because weights have requires_grad=True, but we don't need to track this
# in autograd.
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad

# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None

print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

PyTorch: Defining new autograd functions

  • 在底层,每个基础的自动求导(autograd)操作符实际上是两个函数,它们对张量(Tensors)进行操作:
    1. 前向函数(forward function)从输入张量计算输出张量
    2. 反向函数(backward function)接收输出张量相对于某个标量值的梯度,并计算输入张量相对于该标量值的梯度

在 PyTorch 中,可以通过定义一个继承自 torch.autograd.Function 的子类并实现 forward 和 backward 函数,定义自己的自动求导操作符

  • 然后可以通过构造一个实例并像调用函数一样使用它,传递包含输入数据的张量

  • 在这个例子中,我们将模型定义为:y=a+bP3(c+dx),其中 P3(x)=2(5x^3−3x)是三次勒让德多项式(Legendre polynomial of degree three)

  • 我们编写了一个自定义的自动求导函数来计算的前向和反向传播,并用它来实现我们的模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# -*- coding: utf-8 -*-
import torch
import math

class LegendrePolynomial3(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""

@staticmethod
def forward(ctx, input):
"""
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save_for_backward method.
"""
ctx.save_for_backward(input)
return 0.5 * (5 * input ** 3 - 3 * input)

@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, = ctx.saved_tensors
return grad_output * 1.5 * (5 * input ** 2 - 1)


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For this example, we need
# 4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
# not too far from the correct result to ensure convergence.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)

learning_rate = 5e-6
for t in range(2000):
# To apply our Function, we use Function.apply method. We alias this as 'P3'.
P3 = LegendrePolynomial3.apply

# Forward pass: compute predicted y using operations; we compute
# P3 using our custom autograd operation.
y_pred = a + b * P3(c + d * x)

# Compute and print loss
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
print(t, loss.item())

# Use autograd to compute the backward pass.
loss.backward()

# Update weights using gradient descent
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad

# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None

print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')

nn module

PyTorch: nn

  • 计算图和自动求导(autograd)是一种非常强大的范式,用于定义复杂的操作符并自动计算导数。然而,对于大型神经网络来说,原始的自动求导可能过于底层

  • 在构建神经网络时,我们通常会将计算组织成层(layers),其中一些层包含可学习的参数,这些参数会在训练过程中被优化

  • 在 TensorFlow 中,像 Keras、TensorFlow-Slim 和 TFLearn 这样的库提供了比原始计算图更高层次的抽象,这些抽象对于构建神经网络非常有用

  • 在 PyTorch 中,nn 包(torch.nn)也提供了类似的功能

  • nn 包定义了一组模块(Modules),这些模块大致相当于神经网络中的层。一个模块接收输入张量并计算输出张量,同时可能包含内部状态(例如包含可学习参数的张量)

  • nn 包还定义了一组常用的损失函数,这些函数在训练神经网络时非常有用

  • 在这个例子中,我们使用 nn 包来实现我们的多项式模型网络

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
import torch
import math


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# For this example, the output y is a linear function of (x, x^2, x^3), so
# we can consider it as a linear layer neural network. Let's prepare the
# tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

# In the above code, x.unsqueeze(-1) has shape (2000, 1), and p has shape
# (3,), for this case, broadcasting semantics will apply to obtain a tensor
# of shape (2000, 3)

# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. The Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
# The Flatten layer flatens the output of the linear layer to a 1D tensor,
# to match the shape of `y`.
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)

# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-6
for t in range(2000):

# Forward pass: compute predicted y by passing x to the model. Module objects
# override the __call__ operator so you can call them like functions. When
# doing so you pass a Tensor of input data to the Module and it produces
# a Tensor of output data.
y_pred = model(xx)

# Compute and print loss. We pass Tensors containing the predicted and true
# values of y, and the loss function returns a Tensor containing the
# loss.
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())

# Zero the gradients before running the backward pass.
model.zero_grad()

# Backward pass: compute gradient of the loss with respect to all the learnable
# parameters of the model. Internally, the parameters of each Module are stored
# in Tensors with requires_grad=True, so this call will compute gradients for
# all learnable parameters in the model.
loss.backward()

# Update the weights using gradient descent. Each parameter is a Tensor, so
# we can access its gradients like we did before.
with torch.no_grad():
for param in model.parameters():
param -= learning_rate * param.grad

# You can access the first layer of `model` like accessing the first item of a list
linear_layer = model[0]

# For linear layer, its parameters are stored as `weight` and `bias`.
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')

PyTorch: optim

  • 到目前为止,通过手动修改包含可学习参数的张量(使用 torch.no_grad())来更新模型的权重。对于像随机梯度下降(SGD)这样的简单优化算法来说,这并不复杂

  • 然而,在实际应用中,我们通常使用更复杂的优化器来训练神经网络,例如 AdaGrad、RMSProp、Adam 等

  • PyTorch 的 optim 包(torch.optim)抽象了优化算法的概念,并提供了常用优化算法的实现

  • 在这个例子中,我们将像之前一样使用 nn 包来定义模型,但我们将使用 optim 包提供的 RMSprop 算法来优化模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
import torch
import math


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Prepare the input tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss(reduction='sum')

# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use RMSprop; the optim package contains many other
# optimization algorithms. The first argument to the RMSprop constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-3
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate)
for t in range(2000):
# Forward pass: compute predicted y by passing x to the model.
y_pred = model(xx)

# Compute and print loss.
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())

# Before the backward pass, use the optimizer object to zero all of the
# gradients for the variables it will update (which are the learnable
# weights of the model). This is because by default, gradients are
# accumulated in buffers( i.e, not overwritten) whenever .backward()
# is called. Checkout docs of torch.autograd.backward for more details.
optimizer.zero_grad()

# Backward pass: compute gradient of the loss with respect to model
# parameters
loss.backward()

# Calling the step function on an Optimizer makes an update to its
# parameters
optimizer.step()


linear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')

PyTorch: Custom nn Modules

  • 有时候可能需要定义比现有模块序列更复杂的模型。可以通过继承 nn.Module 并定义 forward 方法来实现自定义模块

  • forward 方法接收输入张量,并使用其他模块或张量上的自动求导操作生成输出张量。

  • 在这个例子中,我们将实现一个三阶多项式模型,并将其定义为一个自定义的 Module 子类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
import torch
import math


class Polynomial3(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate four parameters and assign them as
member parameters.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))

def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Tensors.
"""
return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3

def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Construct our model by instantiating the class defined above
model = Polynomial3()

# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters (defined
# with torch.nn.Parameter) which are members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for t in range(2000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)

# Compute and print loss
loss = criterion(y_pred, y)
if t % 100 == 99:
print(t, loss.item())

# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()

print(f'Result: {model.string()}')

PyTorch: Control Flow + Weight Sharing

  • 作为一个动态图和权重共享的例子,我们实现了一个非常奇特的模型:一个三到五阶的多项式模型:在每次前向传播时,它会随机选择一个介于 3 和 5 之间的阶数,并使用该阶数来计算输出

  • 在计算四阶和五阶时,模型会重复使用相同的权重

  • 对于这个模型,我们可以使用普通的 Python 控制流来实现循环,并通过在定义前向传播时多次重用相同的参数来实现权重共享

  • 我们可以轻松地将这个模型实现为一个 Module 子类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
import random
import torch
import math


class DynamicNet(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate five parameters and assign them as members.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
self.e = torch.nn.Parameter(torch.randn(()))

def forward(self, x):
"""
For the forward pass of the model, we randomly choose either 4, 5
and reuse the e parameter to compute the contribution of these orders.

Since each forward pass builds a dynamic computation graph, we can use normal
Python control-flow operators like loops or conditional statements when
defining the forward pass of the model.

Here we also see that it is perfectly safe to reuse the same parameter many
times when defining a computational graph.
"""
y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
for exp in range(4, random.randint(4, 6)):
y = y + self.e * x ** exp
return y

def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3 + {self.e.item()} x^4 ? + {self.e.item()} x^5 ?'


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Construct our model by instantiating the class defined above
model = DynamicNet()

# Construct our loss function and an Optimizer. Training this strange model with
# vanilla stochastic gradient descent is tough, so we use momentum
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
for t in range(30000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)

# Compute and print loss
loss = criterion(y_pred, y)
if t % 2000 == 1999:
print(t, loss.item())

# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()

print(f'Result: {model.string()}')